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Generation of Non-Rayleigh Speckle 
Distributions Using Marked 

Regularity Models 
Robert M. Cramblitt,  Member, IEEE, and Kevin J. Parker, Fellow, IEEE 

Abstract-Fully developed speckle patterns observed 
in coherent imagery are characterized by a Rayleigh- 
distributed envelope amplitude. Non-Rayleigh distributions 
are observed in many cases, such as when the number of 
scatterers in a resolution cell is small or scatterers are or- 
ganized with some periodicity. Distributions resulting from 
the assumption of random scatterer phase (random walk 
models) have been used to describe the speckle amplitude 
in these cases, leading to K, Rician, and homodyned-K am- 
plitude distributions. An alternative is to incorporate non- 
random phase implicitly by adopting models that directly 
describe the spatial placement of point scatterers. We ex- 
amine the consequences of assuming that scattering is de- 
scribed in one dimension by a stationary renewal process in 
which the arrival times are the locations of ideal point scat- 
terers, the interscatterer distances are drawn from a gamma 
distribution, and the scatterer amplitudes are allowed to be 
correlated in space. This model has been called the marked 
regularity model because variations of the model parame- 
ters can generate spatial distributions ranging from clus- 
tered to random to nearly periodic. We will demonstrate 
that all of the non-Rayleigh distributions generated by the 
previous random phase models can also be generated by the 
marked regularity model, and we show under what condi- 
tions the different distributions will result. We also demon- 
strate that the regularity model is inherently capable of 
describing certain sparse scattering conditions. Therefore, 
the model can represent many cases and provide an intu- 
itively pleasing description of the spatial placement of the 
scatterers. 

I .  INTRODUCTION 

PECKLE patterns are a characteristic feature of coher- S ent imaging systems and are a consequence of the non- 
ideal nature of the system point-spread function. A large 
body of literature deals with the generation and statis- 
tical description of speckled images in optics, radar, and 
ultrasound. In systems that detect the echo or backscat- 
ter from a transmitted baseband signal modulated to fre- 
quency W O ,  the detected signal ~ ( t )  = a ( t )  cos(wot+$(t)) = 
R{a(t)eJ4(t)eJwot} ,  where R{.} teenotes the real part, can 
be written as a complex phasor A = ~ ( t ) e ” ( ~ ) .  If the imag- 
ing medium is modeled as a collection of small discrete 
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scatterers, and the imaging syste? is assumed to be linear 
and space-invariant, the ‘output A of a resolution cell can 
be viewed as the complex sum o’f contributions from each 
scatterer within the cell [ 11: 

The mean power E{a:} reradiated by the discrete scat- 
terer (such as a sufficiently small sphere) when multiple 
scattering is neglected (the Born approxj mation) is depen- 
dent on the size and type of the scatterer and the frequency 
of illumination [ a ] ,  [3]. The phase 4,, depends on the posi- 
tion of the discrete scatterer with respect to the imaging 
system. 

Attempts to model the statistical nature of speckle pat- 
terns typically fall into two broad categories: random walk 
models and spatial point process models. The former usu- 
ally assumes that the positions of scatterers are random 
both within and between resolution cells. In specific cases, 
it is possible to derive the first-order probability dysi ty  
functions (PDF) of the amplitude (magnitude) of A, but 
the resulting pJase of A’ it; randoim. For the spatial models, 
the phase of A depends on the assumed spatial structure; 
derivations of amplitude PDF become very difficult in this 
case. 

We will demonstrate, via quantitative statistical anal- 
yses of random realizations of (l), that a single spatial 
point process model, referred to as the marked regularity 
model, is capable of producing amplitu.de PDF that are 
consistent with the random walk models and show how 
the regularity parameters affect the type of distribution 
generated. The marked regularity model provides a sim- 
ple, intuitively pleasing description of the physical place- 
ment of point scatterers. It also allows the modeler to in- 
corporate simple spatial amplitude correlations but pro- 
vides closed-form descriptions OF the power spectral den- 
sity (PSD) of the process. The latter campability is impor- 
tant because second-order descriptions can provide a basis 
on which to differentiate between different backscatter sig- 
nals when first-order statistics are essextially identical. In 
medical ultrasound, this provides a quantitative means of 
distinguishing between diseased and normal tissues. 
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A. R a n d o m  Walk Models 

Random walk models assume that the phase associ- 
ated with each scatterer in the resolution cell is random 
and independent of the amplitude; so (1) then represents 
a random walk in the complex plane. If the number of 
scatterers N in the resolution cell is very large or if the 
individual scatterer amplitudes a, happen to themselves 
be Rayleigh-distributed, the resulting amplitude PDF is a 
Rayleigh density [l], [4]: 

which we refer to parametrically as the Rayleigh(2) PDF. 
This is the fully developed speckle case, also referred to as 
diffuse scattering. 

If N is allowed to be random and happens to be drawn 
from the negative binomial distribution with parameter 
T ,  Jakeman [4] showed that the amplitude is then K- 
distributed whenever the mean number of scatterers 
is sufficiently large, no matter what distribution a, is 
drawn from: 

where b = 2 2 / r / a 2 ,  which we refer to as the K ( r , 2 ,  N = 

1) PDF. If the individual scatterer amplitudes a, happen 
to be K-distributed, Jakemen showed that the amplitude 
PDF would be K(T, 2, N ) ,  no matter what N happens 
to be. When the parameter r is very large, the amplitude 
becomes Rayleigh-distributed, but smaller values of T are 
associated with the clustering of scatterers. Oliver [5] de- 
veloped the second-order properties of speckle intensity in 
the K-distributed case for certain scatterer amplitude dis- 
tributions and correlations. 

Fig. 1 provides examples of different random-walk- 
based distributions. As Fig. 1 demonstrates, the peak of 
the K density is shifted toward the origin, and the area 
under the tail is greater than that of the Rayleigh density. 
The difference between the two densities is manifested as 
a subtle shift in the tails of the PDF when T is of interme- 
diate magnitude. 

A nonrandom term S representing a specular or unre- 
solved coherent component can be added to (I); under the 
same assumptions as in the Rayleigh case, the amplitude 
PDF is a Rician density [ 11, [a]: 

which we refer to as the Rice(S,s)  PDF. Such a compo- 
nent might arise when scatterers occur at quasi-periodic 
intervals that are so short that the first harmonic peak in- 
duced in the RF spectrum by the periodicity occurs above 
the system bandpass. Wagner e t  al. [2] allowed S to vary 
spatially in a deterministic fashion, making (4) into a gen- 
eralized Rician density, and examined the second-order 

SPECKLE AMPLITUDE PDF EXAMPLES 
0.7 

P Rayleigh 

Fig. 1. Examples of the Rayleigh, K, Rice, and homodyned-K density 
functions. 

statistics of speckle intensity. In particular, S was allowed 
to represent a nonrandom periodic spatial variation. 

As in the Rician case, a nonrandom specular term may 
be added to (l), while maintaining the assumptions re- 
quired for the development of the K distribution. In this 
case, the resulting amplitude PDF is a homodyned-K den- 
sity [6]: 

( 5 )  

for which no closed form solution exists and which we refer 
to as the HK(T, S, 2) PDF. 

The homodyned-K density differs from the Rician den- 
sity in much the same way as the K-density differs from 
the Rayleigh. as Fig. 1 illustrates. 

Jakeman and Tough [7], [8] described the relationships 
among all of the previously mentioned random walk mod- 
els and proposed a generalized K distribution that can 
simplify to K or Rician distributions under the appropri- 
ate conditions, although they point out that there are cer- 
tain difficulties with this approach. Their approach does 
include some limited departures from the assumption of 
random scatterer phase, as does the approach of Barakat 
[9]. If the number of scatterers in the random walk is very 
small, Daba and Bell [lo] showed that solutions could be 
derived for the intensity (squared-amplitude) PDF. 

Various researchers have proposed applying random 
walk models to the analysis of medical ultrasound data. In 
addition to the already cited work of Wagner et al. [a] and 
Dutt and Greenleaf [6], Shankar [Ill adapted Jakeman's 
derivations for the ultrasound context, and Molthen et al. 
[la] and Narayanan e t  al. [13] proposed using estimates of 
the parameters of the K distribution in combination with 
other measures to characterize tissue measurements. 
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B. Spatial Models 

Spatial models attempt to describe the physical place- 
ment of point scatterers and can, therefore, describe cases 
in which the phase of each scatterer is not uniformly dis- 
tributed. The simplest spatial model treats scatterers as 
the points of a Poisson point process. This is equivalent 
to the random walk model in that scatterers appear to 
be placed completely at random. Tuthill et al. [14] sug- 
gested using a combination of a Poisson point process and 
a perfectly periodic process to model ultrasonic scatter- 
ing from tissues that have some regularly spaced struc- 
tures. They showed that amplitude PDF corresponding 
to Rayleigh, Rician, and what they termed pre-Rayleigh 
could develop as the density of scatterers decreased. The 
regularity model was proposed by Landini and Verrazzani 
[15] to describe both random and regular (but not perfectly 
regular) spatial placements. This model treats scatterers 
as points of a stationary renewal process, of which the 
Poisson process is a special case. Cramblitt and Bell [16] 
investigated the estimation of regularity model parameters 
based on sparse spectral estimates and extended the model 
to allow for nonuniform scatterer amplitudes (marks) [17]. 
It is this model that we will consider in depth subsequently. 
Landini et al. [18] demonstrated that the regularity model 
would predict pre-Rayleigh amplitude PDF at low scat- 
terer concentrations. 

Varghese e t  al. [19], [20] employed a model similar to 
the regularity model to show that spectral autocorrelation 
functions could detect quasi-periodic scatterer placements. 
Weng e t  al. [all, [22] used simulations from another quite 
similar model to show that certain types of phase nonuni- 
formities develop at various frequencies in the presence 
of quasi-periodic spatial placement. They proposed sev- 
eral measures to detect these nonuniformities. Ohya e t  al. 
[23] used a jittered-lattice model to demonstrate that the 
amplitude signal-to-noise ratio would be enhanced in the 
presence of quasi-periodic scattering. The jittered-lattice 
model assumes that all scatterers occur at locations that 
are randomly offset from a fixed periodic lattice; the offsets 
are small with respect to the period. This type of model 
was also used by Narayanan et al. [24] in an investiga- 
tion of methods to detect phase nonuniformity caused by 
quasi-periodic scattering. 

Shankar e t  al. [25], combining aspects of both random 
walk and spatial models, used parameters of the K dis- 
tribution as well as a x 2  test of phase nonuniformity in 
an attempt to detect lesions of the breast. Abeyratne e t  
al. [26] proposed using a superposition of marked regu- 
larity models to model tissue structure and proposed the 
characterization of tissues based on third-order statisti- 
cal properties, although their theoretical development was 
limited to a combination of random and perfectly periodic 
scattering processes. 

In this paper, we build on the links that have been 
established between quasi-periodic scattering and non- 
Rayleigh PDF, showing that all of the common non- 
Rayleigh densities can be generated by adjusting the pa- 

rameters of the marked :regularity model. Although most 
attention has been focutied on the ability of this model 
to describe quasi-periodic structure, it also describes the 
clustering of scatterers, which is significant because clus- 
tering is the underlying premise of the random walk model 
leading to K distributions. We will begin by reviewing the 
description of the marked regularity model and then use 
computer simulations to investigate the first-order distri- 
butions generated by this model. 

11. MARKED REGULARITY MODELS 

The regularity model treats scatterers as the points of 
a stationary renewal point process in which the distances 
between points are gamma-distr ibuted. 'This process is de- 
scribed by the scatterer function, 

7 

s ( t )  = ) i m , 6 ( t  - 

i 

in which the {T,} are an ordered sequence of scatterer lo- 
cations expressed as temporal delay times. This function 
can be viewed as the time domain equivalent of (1). The 
{T,}, defined so that TO 5 0 5; T I ,  are then the recur- 
rence times from the origin of the renewal process. The 
marks correspond to the {a,} of (1) and represent the de- 
tected amplitudes of the wave reflected by the scatterers. 
We assume that the interscatterer times {x,} are indepen- 
dent, identically distributed (i.i.d.) random variables from 
a gamma(a,P) distribution, which has a density function: 

(7) 

where r (a )  is the gamma functison: 

This density, unlike a Gaussian, for example, is consistent 
with the assumptions underlying the existence of a station- 
ary random process [27]. The mean and variance of the 
interscatterer times are Z = ail and of = ap2 = Z 2 / a ,  
respectively. Thus, for a given mean interscatterer spac- 
ing, z, the variance of the interscatterer times is controlled 
by varying the model order a. If  Q is luge,  the variance 
of the interscatterer times becomes small, and the scat- 
terers become very regularly spaced. In the limiting case, 
the scatterers have a periodic spacing. [f a = 1, the {zZ} 
are exponentially distributed, arid the niodel reduces to a 
Poisson point process. In this case, the scatterers appear 
to have a random placement, and the degree of regularity 
is considered small. Values of a less than unity cause the 
scatterers to appear clustered. Fig. 2 demonstrates this 
behavior for various valules of a when the mean interscat- 
terer distance is maintained at unity. Notice that the spa- 
tial organization differs remarkably even though the mean 
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REGULARITY MODEL SIMULATION 
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Fig. 2. Demonstration of spatial scatterer organization as the regu- 
larity model order is varied while 3: is held at  a constant value of 1 
scatterer/s. Each circle represents the location of a scatterer. except 
in the a = 0.01 case, where each represents a cluster of scatterers 
falling too close together to resolve on this scale. 

interscatterer distance is the same in each case. Note that 
it is possible to maintain a minimum scatterer spacing by 
adding a shift to the interscatterer density function. 

The straightforward description of the physical place- 
ment of scatterers is one of the key features of the reg- 
ularity model. The other is that second-order statistical 
descriptions of the process are known. The PSD of the 
unmarked (mi = 1) scatterer function is: 

(9) 

where 

2 = (1 - p:/a)". (10) 

This PSD is constant for a = 1 and develops peaks near 
the harmonics of 1/Z (Hz) as a increases. At large frequen- 
cies, it becomes equal to 1/Z. If a < 1, the PSD decreases 
monotonically from the origin. Fig. 3 shows the power 
spectra of the processes corresponding to those shown in 
Fig. 2. The mean power spectrum of a finite interval (e.g., 
a resolution cell) of the regularity process can be approxi- 
mated in closed form as long as the mean number of scat- 
terers in the interval is sufficiently large [16]. 

For certain cases of mark correlation functions, the PSD 
of the marked regularity process may be written in either 
open or closed forms, depending on the mark correlation 
being a function of time (temporal correlation) or loca- 
tion in the arrival time sequence (sequential correlation). 
Closed form approximations of the mean power spectrum 
of finite intervals exist in either case [17]. The existence of 
PSD expressions allows long-range correlation of scatterer 
amplitude to be incorporated into the scattering model 
so that, for example, the random spatial behavior of the 
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Fig. 3.  Power spectra of processes corresponding to those shown in 
Fig. 2. From top to bottom, a = 100, 10, 1, 0.1, 0.01. 

Poisson point process case ("diffuse scattering") can be 
combined with a damped-sinusoidal mark correlation to 
incorporate quasi-periodic variations in a simple manner. 

In the next section, we describe the results of simu- 
lations designed to examine the first-order statistics that 
result from the assumption of the basic regularity model. 

111. SIMULATIONS 

We simulated the scattering function modeled by the 
regularity process and convolved it with a gated cosine 
pulse to simulate a detected RF signal. A gated cosine 
pulse of length T was chosen so that only scatterers within 
the well-defined distance of fT/2 could affect the RF sig- 
nal at any point. A Gaussian pulse envelope can be used. 
but the effective number of interfering scatterers is not as 
precisely defined. The period of the cosine was 10 samples, 
one RF sample was obtained at the center of every resolu- 
tion cell, and 1000 sequential resolution cells were sampled. 
We used uncorrelated log-normal marks with mean m = 1 
and variance CT& = 0.1. Simulations were carried out for 
various combinations of a,  T ,  and ?f. T was chosen so that 
the mean number of scatterers per resolution cell, T / F j  
varied logarithmically from 2 to 50. ?f was chosen to be 
either 2.5 or 3 periods of the cosine used in the RF pulse, 
and a was varied logarithmically from 0.03 to 100. The 
two choices for z were motivated by the fact that scat- 
terers should produce constructive interference when pe- 
riodically spaced at even multiples of quarter wavelengths 
and should produce destructive interference when spaced 
at odd multiples of a quarter wave. 

The simulation was repeated five times, and the collec- 
tion of RF samples was used to form a histogram estimate 
of the PDF and integrated to estimate the cumulative 
distribution function (CDF). We compared the observed 
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Fig. 4. Example of the mixed behavior that develops as either a or 
the mean number of scatterers per cell decreases. The smooth line is 
the parametric mixed K density best fitting the data (stepped line). 

CDF to that of the Rayleigh, Rician, and K distributions 
by computing a mean-squared error (MSE). The Rayleigh 
CDF used was that with the same mean-squared value as 
the data, which is a maximum likelihood (ML) estimate. 
The parameters of the Rician were also ML estimates, al- 
though a simple optimization is required to find them. Be- 
cause no closed-form ML solution for the K distribution 
exists, we set its mean-squared value equal to the sam- 
ple mean square and found the r parameter by minimiz- 
ing the MSE between the K and the observed distribution. 
The distribution with the lowest MSE is considered to have 
the best fit to the data among the three distributions, even 
though the best fit may be rather poor, as we shall see. 

IV. RESULTS 

A limitation of most random walk-based models is that 
they assume that resolution cells contain large numbers 
of scatterers so that there is little chance that the res- 
olution cell contains no scatterers; hence, the PDF have 
zero value at the origin. However, when the number of 
scatterers per resolution cell is small or when significant 
clustering of scatterers occurs, the probability that zero 
scatterers fall in a resolution cell becomes significant. We 
observed this behavior manifesting itself as a peak in the 
PDF at the origin as scatterers became more clustered 
(small a )  or as their concentration decreased (small T / Z ) .  
Fig. 4 illustrates this behavior. In this case, a density that 
would otherwise seem to be well modeled by a K density 
contains a peak near the origin. We found that such cases 
could be modeled by using a mixture of a K density and 
a discrete density consisting of a single delta function at 
the origin with a magnitude equal to the probability that 
zero scatterers fall in a resolution cell, Pr(NT = 0 ) ,  which 
can be calculated from the parameters of the regularity 

AMPLITUDE DISTRIBUTIONS AND RESULTING MSE (XBAR-30) 
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Fig. 5. Chart showing which of the Rayleigh, Rician, or K distrihu- 
tions best fit the CDF simulated for the values of a and T / Z  shown. 
Z = three cycles of the RF pulse. Numbers indicate the MSE of 
the comparison. Boxes with the darkest shading indicate that the 
Rayleigh CDF fit hest, medium shading indicates that the Rician 
CDF fit best, and no shading indicates that the K CDF fit best. 
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Fig. 6. Chart showing which of the Rayleigh, Rician, or K distribu- 
tions best fit the CDF simulated for the values of a and T / Z  shown. 
x = 2.5 cycles of the RF pulse. - 

model. The data provided by Landini et  al. [18] provides 
experimental confirmation of this behavior, which, in their 
case, developed as the mean scatterer concentration of a 
phantom was decreased. We included the mixed term when 
comparing the simulated PDF to K densities. 

From the three theoretical CDF under consideration, 
we determined the one best fitting the observed CDF in 
the mean-squared sense and present this information in 
Figs. 5 and 6 .  

The HK PDF combines features of the Rice and K PDF; 
therefore, it is natural to speculate that it arises as the re- 
sult of a combination of periodic structure and clustering. 
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Fig. 7. Example of data for which a homodyned-K PDF appears 
to provide a better fit than a Rician or Rayleigh PDF, A logarith- Fig. 8. Power spectral densities of the regularity process for cases 

mic scale helDs to  visualize the difference between the Rician and a = lo and 30 and ' = '. The O1 = 30 
peaks. homodyned-K curves. 

We tried to generate such a case by taking a simulation 
from a case seen to result in Rician statistics and ran- 
domly extinguishing marks with a probability of 0.6. This 
reduces their frequency of occurrence and maintains the 
quasi-periodic spacing expected of a large Q case. Fig. 7 
shows the result of this sparse scattering experiment along 
with the Rayleigh, Rician, and HK densities best fitting 
the data. The MSE of the HK PDF shown is 9.2 versus 
18.0 for the Rician PDF. The first three relative inten- 
_ _  sity moments (often used to solve for PDF parameters): 
a2n/(a2)n,  n = {2,3,4}, were 1.6, 3.4, and 9.1 for the ob- 
served data; 1.6, 3.2, and 8.2 for the Rician PDF: and 1.6. 
3.4, and 9.3 for the HK PDF. 

V. DISCUSSION 

Regularity models in which Q = 1 represent Poisson 
point processes corresponding to the random walk: there- 
fore, we expect that as the number of scatterers per res- 
olution cell becomes large, Rayleigh amplitude statistics 
will develop. This was observed, although Rayleigh behav- 
ior is not quite developed at 10 scatterers per cell, which 
is often taken to be the point at which fully developed 
speckle is present. Larger values of Q correspond to quasi- 
periodic scatterer placement; the cases in Fig. 5 correspond 
to placement at a spacing that should result in construc- 
tive interference of RF pulses; the cases in Fig. 6 should 
result in destructive interference. 

Rician statistics were observed to result at the largest 
values of Q in the constructive interference cases; the same 
cases revert to K or Rayleigh behavior in the destructive 
interference cases. This is in agreement with the simu- 
lations performed by Tuthill et al. [14] and is explained 
by viewing the effect of destructive interference as a phe- 

nomenon that reduces the effective number of contributing 
scatterers, resulting in K distributions or possibly Rayleigh 
distributions if there are a sufficient number of effective 
scatterers. 

Cases in which the scatterer density is small (small T / T )  
or cases in which clustering becomes important are best 
described by the K distribution. This agrees with the ob- 
servation of pre-Rayleigh densities in [14] and [MI. 

Of course, there is no requirement or expectation that 
the distributions generated by the regularity model should 
be limited to the three special cases that we have consid- 
ered. In fact, examination of the MSE in each of the charts 
reveals various regions in the parameter space for n-hich 
the error is quite large, implying that none of the three 
PDF is an appropriate model. Consider. for example. cases 
in which Q is extremely large, so that the resulting scatter- 
ers exhibit only slight deviations from perfect periodicitj- 
(the jittered-lattice model referred to earlier). The result- 
ing amplitude distributions should then become essentially 
Gaussian-type PDF with the mean equal to %TIT. Values 
of Q lying between these and those giving Rician statistics 
will result in an intermediate type of PDF that is difficult 
to describe with any simple, well-known parametric PDF. 
Interested readers may wish to consult Daba and Bell's 
work [lo] describing intensity PDF for small numbers of 
randomly placed scatterers. 

The existence of a PSD formula for the marked regular- 
ity process may be especially useful when trying to develop 
tests to distinguish between RF signals arising from scat- 
tering distributions whose first-order statistics are quite 
similar. For example, the two Rician cases of Fig. 5, corre- 
sponding to T / Z  = 5 and Q = 10 and 30, have almost iden- 
tical Rician parameters (S = 1.3, 2 = 4), but the PSD of 
the two underlying regularity processes differ considerably 
as is illustrated in Fig. 8. The work by Cramblitt and Bell 
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[16], [17] examined the feasibility of estimating regularity 
model parameters from sparse samples of the power spec- 
trum. The use of spectral autocorrelation functions [19], 
[20] and third-order statistics [26] is also of considerable 
interest and should be explored within the context of tfte 
marked regularity model. 

No attempt was made here to assess how many RF sam- 
ples are required to exploit the properties of the marked 
regularity model. This is a critical issue in attempting to 
perform tissue characterization in medical ultrasound be- 
cause uniform regions of tissue can be quite small. Separate 
investigations are required to address this issue. This does 
not preclude the use of the model to generate synthetic 
scenes with amplitude distributions of interest, however, 
or to assist in the statistical analysis of such scenes. We 
have also made no attempt to model mark correlations or 
to relate the model to scattering from particular types of 
tissue; these items fall under the scope of future work. Vari- 
ous efforts have been made to study tissue scattering in the 
context of the random walk and spatial models described 
earlier, and new first principle models for tissue scattering 
[28] hold the potential to provide a means of validating 
these statistical approaches. We have cited instances in 
which experimental evidence exists to confirm some of our 
observations, but additional experimental work, particu- 
larly with well-controlled phantoms, would be of consider- 
able interest. 

VI. CONCLUSIONS 

We have demonstrated through the use of computer 
simulations that the marked regularity model is capable of 
generating scatterer processes that result in the RF  ampli- 
tude distributions that have been most frequently analyzed 
in the literature and for which there is ample experimen- 
tal evidence. Adjustment of the basic regularity parame- 
ters allows random, clustered, and quasi-periodic structure 
to be generated within a single model, and Rayleigh, Ri- 
cian, K, and homodyned-K distributions are generated, 
depending on the mean interscatter distance and RF cen- 
ter frequency, the regularity model order, and the num- 
ber of scatterers per resolution cell. The model’s simple 
description of scatterer placement in terms of random in- 
terscatterer distances is intuitively pleasing, and the exis- 
tence of formulas for the PSD is potentially of great use in 
discriminating between cases exhibiting similar first-order 
statistics. The ability to incorporate spatial correlations 
is particularly promising as a stochastic means of describ 
ing long range structure. Unlike certain results based on 
random-walk-based speckle models for large numbers of 
scatterers, the regularity model is not limited to cases in 
which the mean number of scatterers is large and can, 
therefore, predict enhancement of the PDF near the origin 
at low scatterer densities. 
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